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We present a detailed numerical study of the elementary condensation events �avalanches� associated to the
adsorption of 4He in silica aerogels. We use a coarse-grained lattice-gas description and determine the non-
equilibrium behavior of the adsorbed gas within a local mean-field analysis, neglecting thermal fluctuations
and activated processes. We investigate the statistical properties of the avalanches, such as their number, size
and shape along the adsorption isotherms as a function of gel porosity, temperature, and chemical potential.
Our calculations predict the existence of a line of critical points in the temperature-porosity diagram where the
avalanche size distribution displays a power-law behavior and the adsorption isotherms have a universal
scaling form. The estimated critical exponents seem compatible with those of the field-driven random field
Ising model at zero temperature.
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I. INTRODUCTION

This work is part of a series of papers devoted to the study
of gas adsorption and capillary condensation in silica aero-
gels �1,2�. Our goal is to provide a theoretical interpretation
of 4He adsorption experiments that have been performed
over the last 15 years in several low-temperature physics
groups �3–6�. More generally, we wish to propose a theoret-
ical framework for describing the nonequilibrium �hyster-
etic� behavior of fluids in disordered porous solids �7�. It is
worth noting that the experimental studies of helium in aero-
gel were originally aimed at understanding the effect of
quenched random impurities on equilibrium critical phenom-
ena and phase separation. In particular, the study of the
liquid-vapor transition of 4He followed from the suggestion
that the critical behavior of mixtures or pure fluids confined
in porous media or in contact with a gel network could be
interpreted in terms of the random field Ising model �RFIM�
�8�. In this perspective, the use of aerogel was motivated by
its very tenuous structure �which minimizes the effects of
confinement� and by the fact that the porosity �and thus the
amount of disorder� can be varied in a controlled way. How-
ever, in spite of the early claim that mesoscopic equilibrium
phase separation of 4He could be observed in a 95% porosity
aerogel �3�, leading to an estimation of the order parameter
critical exponent �, it now seems more and more question-
able that true equilibrium behavior is observed in experi-
ments. In particular, recent measurements of sorption iso-
therms using a high-precision capacitive technique �5� show
that hysteresis between filling and emptying persists to tem-
peratures very close to the critical temperature of pure he-
lium �Tc=5.195 K�, and gradual adsorption is always ob-
served above T=4.88 K, instead of the sharp vertical step
expected for two-phase coexistence. Similar observations
have been made by another group �6�, using a low-frequency
mechanical pendulum technique and, more recently, coupling
pressure and optical measurements. These results are remi-
niscent of the behavior of fluids confined in dense porous
glasses which is usually interpreted in terms of capillary con-

densation. Although this moves away the exciting perspec-
tive of studying the putative equilibrium vapor-liquid critical
point of 4He inside aerogel, the remarkable changes in the
hysteretic behavior of the adsorbed fluid with temperature
and porosity remain to be explained. In particular, the hys-
teresis loops in very light aerogels have a rectangular �in-
stead of triangular� shape at very low temperature �for in-
stance, at T=2.34 K in 98% porosity aerogel �4�� with a very
steep adsorption branch that suggests the presence of a genu-
ine, but nonequilibrium, first-order phase transition. This is
in agreement with our theoretical description �1,2� which
predicts the change from a continuous to a discontinuous
adsorption isotherm as one decreases the temperature �at
constant porosity� or increases the porosity �at constant tem-
perature�, the jump in the fluid density corresponding to a
macroscopic avalanche in the system. �Note that we only
focus here on adsorption. The behavior on desorption is also
interesting but is related to other physical processes as dis-
cussed in Refs. �1,2�.� This scenario, which resembles the
one predicted for the field-driven RFIM at zero temperature
�9,10� and observed in some disordered magnetic systems
�11,12�, suggests the existence of a line of disorder-induced
critical points in the temperature-porosity diagram with an
associated scaling behavior. In the present work we further
elaborate on this issue by presenting results concerning the
avalanche properties as a function of temperature and poros-
ity and by studying the scaling behavior of the adsorption
isotherms in the vicinity of the nonequilibrium critical
points. We are also interested in characterizing the ava-
lanches geometrically and studying their possible relation
with the aerogel structure.

The paper is arranged as follows. In Sec. II we review the
model and the theory. In Sec. III we present the results for
the statistical properties of avalanches. In Sec. IV we discuss
the scaling behavior of the adsorption isotherms and present
the phase diagram of the model in the temperature-porosity
plane. We conclude, in Sec. V, with a discussion of the rel-
evance of our results to experiments.
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II. MODEL AND THEORY

Since both the model and the theory were described in
detail in ealier work �see in particular Ref. �1��, we will
restrict the presentation to some key aspects that are relevant
to our present goal.

The gel-fluid system is modeled by a coarse-grained
lattice-gas where each cell of the size of a silica particle
�typically a few nanometers �1�� is occupied either by the
solid or the fluid. The distribution of silica particles on the
lattice is obtained by a diffusion-limited cluster-cluster ag-
gregation �DLCA� algorithm �13�, so as to model the intri-
cate microstructure of actual base-catalized silica aerogels.
On the other hand, fluid particles can equilibrate with a res-
ervoir that fixes their chemical potential � and the tempera-
ture T. Multiple occupancy of a site is forbidden and only
nearest-neighbors �NN� attractive interactions are consid-
ered. For reasons that are explained in Ref. �2�, we use a
body-centered-cubic �bcc� lattice and periodic boundary con-
ditions �N=2L3 where L is the linear size�.

For a given configuration of the solid matrix, fluid con-
figurations are obtained by minimizing a grand-potential
functional in the local mean-field approximation �7�,

����i�� = kBT�
i

��i ln �i + ��i − �i�ln��i − �i�� − wf f�
�ij	

�i� j

− wsf�
�ij	

��i�1 − � j� + � j�1 − �i�� − ��
i

�i, �1�

where �i �i=1, . . . ,N� is the thermally averaged fluid density
at site i and �i=0,1 is the quenched occupancy variable for
the gel particles ��i=0 if the site is occupied by the gel and
1 otherwise�. wff and wsf denote the fluid-fluid and solid-fluid
interactions, respectively, and the double summations run
over all distinct pairs of NN sites. The gel porosity is given
by �= �1/N��i�i and the ratio y=wsf /wff controls the wetta-
bility of the solid surface.

����i�� thus defines a grand-potential landscape whose
extrema are obtained by solving the corresponding Euler-
Lagrange equations �� /��i=0. At fixed T and �, and for a
given realization of the solid, this yields a set of N coupled
nonlinear equations

�i =
�i

1 + e−���+wf f�j/i��j+y�1−�j���
, �2�

where �=1/ �kBT� and the sum runs over the nearest neigh-
bors of site i. A crucial feature of these equations is that they
may have a large number of solutions at low temperature
�and in a certain range of �� as a consequence of the ran-
domness of the solid matrix �14�. We believe that this feature
is the key for understanding the physics of adsorption in
disordered porous solids. Especially important are the local
minima of ����i�� which are obtained by solving the set of
Eqs. �2� iteratively �15� and which correspond to metastable
states �to be distinguished from the global minimum of
����i�� that defines the true equilibrium state�. Note that de-
spite its mean-field character �by which thermal fluctuations
are only crudely described�, the present approach fully ac-
counts for the disorder-induced fluctuations. In contrast with

the standard global mean-field approximation, our treatment
still allows us to describe strongly inhomogeneous configu-
rations and to predict nonclassical critical behavior.

Computing the metastable states is however not sufficient
for describing the nonequilibrium behavior of the system,
and one also needs to specify a dynamics. Our theoretical
description �1,2,7� is based on the use of a nonergodic, de-
terministic, zero-temperature-like dynamics which neglects
all thermally activated processes that would allow the system
to cross the �grand-potential� barriers; a change in the fluid
configurations is thus only due to a change in the landscape
that comes itself from a change in the temperature or from a
variation of the external field �here the chemical potential ��.
As � varies �for instance, when the pressure in the reservoir
is slowly increased at constant T�, the system either follows
the minimum in which it was trapped as this minimum de-
forms gradually, or it falls instantaneously into another mini-
mum when the former reaches its stability limit. This latter
move is a discontinuous and irreversible process, an ava-
lanche, which is at the origin of the history-dependent be-
havior of the system. The avalanche corresponds to some
collective condensation event inside the gel network which
manifests itself by a jump in the adsorption isotherm
�whereas the gradual deformation of a minimum only corre-
sponds to a slight swelling of the liquid domains�. The size
of the avalanche is thus given by the size of the jump, i.e.,
the discontinuous change in the average fluid density
� f = �1/N��i�i. As was shown qualitatively in Ref. �2�, these
condensation events occur at different length scales inside
the gel, depending on chemical potential, temperature, and
porosity. In particular, when � is large enough, for instance
�=95%, there exists a critical point separating a high-
temperature regime where all condensation events are of mi-
croscopic or mesoscopic size �and the adsorption isotherm is
smooth in the thermodynamic limit�, and a low-temperature
regime where a macroscopic fraction of the gas condenses,
which yields a finite jump in the isotherm. It is one goal of
the present work to put these observations on a more quan-
titative basis.

We shall discuss below in more detail the relevance of
this theoretical description to the actual experimental situa-
tion. Let us just recall that this picture is expected to be valid
when there are widely separated time scales in the problem.
Specifically, the observation time must be much larger than
the local equilibration time �i.e., the time needed to relax
from a marginally stable state to a nearby metastable state�
but much smaller than the time associated to thermal activa-
tion �i.e., the time that it takes to escape from a local mini-
mum via a nearby saddle point� �16�. This requires that en-
ergy barriers are much larger than temperature, which is
indeed the case in many experimental situations dealing with
random systems. It may also be noted that our definition of
avalanches generalizes the one used at T=0 �see, e.g., Ref.
�17��. We indeed introduce an explicit temperature depen-
dence in the problem by allowing the �mean-field� free-
energy landscape itself to change with T �for a similar ap-
proach in the context of random magnets, see, e.g., Ref.
�18��. As shown in our previous works, this dependence ex-
plains quite convincingly the variations observed in the hys-
teretic behavior of gases adsorbed in disordered solids at low
enough temperature.
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III. AVALANCHE PROPERTIES

As discussed in the preceding papers of this series �1,2�,
the number, the size and the shape of the condensation events
along an adsorption isotherm depend on porosity and tem-
perature. They also depend on the value of the chemical
potential at which they occur. The random character of these
events �each finite-size sample has a different isotherm� re-
quires a statistical study of their properties, an issue that has
been investigated in great detail in the context of the field-
driven RFIM �10,19�.

A. Numerical procedure

The first problem is to identify each avalanche properly.
At T=0, when the microscopic variables can only take dis-
crete values �such as the Ising spins in the RFIM�, this is an
easy task because the energy landscape only changes through
the disappearance of minima, which induces the avalanches.
One can then vary the external field until a spin becomes
unstable �this spin is unique when the random field distribu-
tion is continuous� and then count the number of spins that
flip during the avalanche to determine its size. At finite tem-
perature, on the other hand, one must deal with continuous
variables �the local fluid densities �i in the present case�, and
since ��, the increment in the chemical potential along the
adsorption isotherm, is always finite, one must distinguish
between the gradual deformation of a minimum and the jump
associated to the passage to another local minimum, both
leading to a change in the total density. Moreover, if �� is
not small enough, several avalanches may overlap, which
biases the statistics of their number or size distribution. Al-
though, in principle, one could precisely locate the beginning
of each avalanche by following the evolution of the eigen-
values of the Hessian matrix Hij =�2� /��i�� j with � or T �an
avalanche starts when a local spinodal corresponding to the
vanishing of a certain eigenvalue is reached �20��, this is a
daunting numerical task for a large system �with N
106�
and it is more advisable to use another procedure.

Let us first note that the determination of the location and
size of the avalanches depends on the precision in the com-
putation of the metastable states. Since these latter are ob-
tained by solving the set of Eqs. �2� iteratively, it must be
checked that the results are not significantly modified when
the convergence criterion of the iterative procedure is
changed. All the results presented here were computed with a
precision 	=10−6 �i.e., the calculation was stopped at itera-
tion n when ��i

�n�−�i
�n−1��
	�. It was found that decreasing 	

to 10−10 did not change the results by more than 1%.
Consider now the variations ��i=�i��+���−�i��� in the

local fluid densities when increasing the chemical potential
by a very small �but finite� increment �� �for instance ��
=10−6, with wff taken as the energy unit�. We show in Fig. 1
a small portion of a typical low-temperature isotherm com-
puted in an 87% porosity sample of size L=50 at T*=T /Tc
=0.5 �kBTc /wff =2�. The random character of the condensa-
tion events results in the fine staircase structure of the curve,
with the vertical steps corresponding to the avalanches sepa-
rated by nearly horizontal portions corresponding to the
smooth deformation of the grand-potential local minima

�note the small scale on the vertical axis�. The slope of these
near-plateaus depends on temperature and its order of mag-
nitude can be estimated from the isothermal compressibility
of the pure lattice gas. It turns out that all the �i’s vary by a
very small amount in these flat portions of the isotherms
�less than 10−5–10−6� whereas the vertical steps are due to a
significant variation of some of the �i’s �a low temperature,
this typically corresponds to a gaseous region becoming liq-
uid�. We can use this feature to identify the avalanches un-
ambiguously. Specifically, we consider that the change
�� f =�i��i in the isotherm is only due to a smooth deforma-
tion of a grand-potential minimum when ��max=maxi���i� is
smaller than some threshold, which we take equal to 0.1.
Otherwise there is an avalanche, and we associate to it all the
sites for which ��i�0.001. The size of the avalanche is then
s=�i,av��i, where the sum is restricted to these sites �21� �by
taking s=�� f =�i��i one would include the small increase of
� f which is due to the “smooth” variation of the �i’s on the
other sites of the lattice�. This criterion thus implies that
avalanches for which ��max
0.1 cannot be detected. By
choosing a smaller threshold, e.g., ��max
0.01, one may
find new avalanches, but their size s is very small �always
less than 10�. As a consequence, avalanches with s
10 will
not be considered in the following. In any experiment there
is also a threshold below which signals cannot be detected.

Since one must collect the results of many samples to get
a good statistics of the avalanches properties, it is impossible
in practice to study a whole isotherm with an increment ��
as small as 10−6. It is much more efficient to proceed by
dichotomy, comparing the configurations obtained for two
values of �, say �1 and �2 �initially, �1 is a large negative
value and �2=−4, the value at saturation�. If ��max�0.1
between the two configurations, one then compares the con-
figurations for �1 and ��1+�2� /2 on the one hand, and
��1+�2� /2 and �2 on the other hand. One then looks for an
avalanche in the two intervals, and the same procedure is
repeated until no avalanche is found between two configura-
tions, or the difference in chemical potential becomes
smaller than 10−6 �this is the method that was used for ob-
taining the isotherm shown in Fig. 1, which explains that the
points are irregularly spaced�.

FIG. 1. Portion of a typical adsorption isotherm in an 87% po-
rosity aerogel at T*=T /Tc=0.5 �� f is the average fluid density in-
side the aerogel and � the gas chemical potential�. Calculations
were done in a sample of size L=50 using the dichotomy procedure
explained in the text.
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Finally, to characterize geometrically an avalanche, which
is a random object, one may define an effective “radius of
gyration” Rg by attributing to each site i a “mass” that cor-
responds to the change in the local density,

Rg
2 =

�i,av
�ri − rm�2��i

�i,av
��i

, �3�

where the sum is restricted to the sites contributing to the
avalanche �i.e., with ��i�10−3� and rm=�i,avri��i /�i,av��i is
the “center of mass” of the avalanche �22�.

B. Number, size and shape

Let us first study how the number of avalanches with a
given size varies with temperature and porosity. To illustrate
the general trend, we consider isotherms obtained in 87%

and 95% porosity aerogels, as shown in Figs. 2�a� and 3�a�.
The sequence of avalanches was recorded in 500 samples of
linear size L=50 and 50 samples of linear size L=100, re-
spectively �this approximately corresponds to the same ratio
L /�G�10, where �G is the correlation length of the aerogel
�1��. Figures 2�b� and 3�b� show N�s�, the �unnormalized�
avalanche size distribution �N�s�ds=Nav, the total number
of avalanches of size larger than 10�. As T increases, Nav
decreases from 335 000 to 81 000 and from 83 700 to
19 800, respectively. The size of the largest possible ava-
lanche corresponding to a simultaneous change of all the �i’s
from 0 to 1 is 2L3. One thus has smax=2.5105 and
2106 in the 87% and 95% aerogels, respectively.

It is readily seen that there exist much larger avalanches
in the lighter aerogel. This is a direct consequence of the
larger void space available, as discussed in our previous pa-
pers �1,2�. In particular, at T*=0.5, some avalanches span the
whole system, signaling that a macroscopic avalanche possi-

FIG. 2. �Color online� �a� Av-
erage isotherms in an 87% poros-
ity aerogel at T*=0.5, 0.65, and
0.8 �from top to bottom�; data cor-
respond to an average over 500
gel samples of size L=50. �b�
Corresponding �unnormalized�
avalanche size distributions N�s�.
The solid lines represent the fit
N�s�
s−�e−s/s0.

FIG. 3. �Color online� Same as
Fig. 2 in a 95% porosity aerogel at
T*=0.5, 0.8, and 0.9; data corre-
spond to an average over 50 gel
samples of size L=100.
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bly occurs in the thermodynamic limit. Note however that
the statistics for very large avalanches is not good, which
explains the erratic behavior seen in Fig. 3�b� for large s.
Moreover, finite-size effects play an important role in the
large-porosity/low-temperature regime and they should be
taken into account to properly describe the evolution towards
the thermodynamic limit �see Ref. �19� for a careful study in
the case of the RFIM�. Unfortunately, this would require a
considerable amount of numerical work, and we shall there-
fore only concentrate our discussion on the nonspanning ava-
lanches.

Figures 2�b� and 3�b� show that the evolution of N�s� with
temperature is quite similar in the two aerogels: as T in-
creases, both large and small avalanches are suppressed, and,
as a consequence, the total number Nav decreases. Only the
number of avalanches of intermediate size stays roughly con-
stant with T. If one refers to what happens in the field-driven
RFIM at T=0, this result may appear surprising. Indeed, the
isotherms get smoother as one increases the temperature, like
the magnetization curves M�H� in the RFIM as one increases
the width of the random field distribution �9,10�. This seems
to imply that the temperature plays the role of an effective
disorder in the system. Therefore, one would expect that
large avalanches become rare as T increases �which is indeed
what happens�, but also that small avalanches proliferate, so
that Nav increases on average �10,19�. It turns out, however,
that temperature also plays another role in our system, a role
which is well documented in the literature devoted to capil-
lary condensation �23�: adsorption in a small cavity becomes
more gradual as T increases. Specifically, mean-field calcu-
lations for a single pore of simple geometry �for instance a
slit of width l� predict that adsorption is continuous and re-
versible above some critical temperature Tc�l� which de-
creases as l decreases. Since small avalanches are associated
with gas condensation in small cavities or crevices defined
by the neighboring gel strands, this phenomenon explains the
decrease of the number of small avalanches �when
T�Th���, the temperature at which the hysteresis disappears
at a given porosity �, there are no avalanches at all and the
isotherms become reversible �2��. It is clear that the random-
field picture can only be applied at a scale much larger than
the correlation length of the solid; schematically, capillary
condensation prevails for s1/3
�G whereas the disordered
character of the aerogel structure plays a major role for s1/3

��G. The two mechanisms compete at the scale s1/3
�G,
which explains that the number of avalanches of intermedi-
ate size does not vary significantly with T.

If we now concentrate on the disorder-dominated regime,
the most remarkable feature, quite visible in the 95% gel at
T*=0.5, is that N�s� follows an approximate power-law be-
havior over several decades. This is the defining signature of
criticality, an issue that has been at the focus of intense re-
search activity in recent years, for instance to explain the
scaling properties of the Barkausen noise in magnetic mate-
rials �24�. In the RFIM picture, the power-law behavior is
related to the existence of a disorder-induced critical point
�9,10�. In this context, the avalanche size distribution should
be analyzed using the form

N�s� 
 s−���s/s0� �4�

where � is a critical exponent �25�, � is a scaling function,
and s0 a cutoff that depends on the distance to the critical
point �s0 diverges as the critical disorder is approached�. Our
results are however too limited to obtain sensible scaling
collapses �although a crude attempt shows that the scaling
function is nonmonotonic, in agreement with the RFIM be-
havior �10��. We simply replace the function � by an expo-
nential form only describing the cutoff of the power-law at
the scale s0. Figures 2�b� and 3�b� show the fits of N�s� in the
two aerogels according to this approximate treatment. The
power-law regime is very limited in the 87% aerogel even at
the lowest temperature, indicating that the system is clearly
outside the critical region. On the other hand, in the 95% gel,
the curves show a linear portion on a log-log scale that in-
creases as T decreases; the cutoff s0 is pushed to larger val-
ues of s �from 3200 to 29 500 as T* varies from 0.9 to 0.8�
and reaches the box size for T*=0.5 �our set of data is how-
ever too limited to estimate the critical exponent associated
to the divergence of s0�. The exponent � increases and be-
comes approximately equal to 1.8 in the fully developed
power-law regime at T*=0.5. Taking into account the fact
that our systems are small and that � in a finite system de-
pends on disorder �19�, this value does not appear inconsis-
tent with that predicted for the RFIM, �=2.03±0.03 �10�. In
any case, the gel-fluid system is clearly close to criticality at
this temperature.

The number and the size of the avalanches along an ad-
sorption isotherm strongly depend on the value of the chemi-
cal potential. We thus also recorded the value of � at which
each avalanche of size s occurred. Figures 4 and 5 show the
corresponding point clouds in the 87% and 95% gels at
T*=0.5 and 0.8, and T*=0.5 and 0.9, respectively. As a gen-
eral rule, the size of the largest avalanches increases with �,
especially in the last stage of the adsorption �note the loga-
rithmic scale on the vertical axis�. But the most striking fea-
ture is that avalanches of very different sizes occur in a small
interval of �. For instance, in the 87% gel at T*=0.5 and
��−4.5, s varies from 10 to more than 103. In the 95% gel
at the same temperature and ��−4.12, the avalanches span
almost all possible sizes between 10 and 106. These obser-
vations are in complete contradiction with the picture based
on the independent pore model which is often used to inter-
pret capillary condensation phenomena �26�. In this model,
only pores of a certain characteristic size l fill at a given
value of the chemical potential, and the adsorbed fluid den-
sity is directly related to the number of pores of this size that
can be found in the material. �One then tries to extract from
the isotherm the pore size distribution.� This picture is
clearly wrong in the present case because of the very open
and intricate character of the gel structure that allows con-
densation events of very different sizes.

The geometrical characterization of the avalanches is
rather difficult. Using s1/3 as an estimate of the extension of
an avalanche is misleading because events with very differ-
ent shapes are observed �see for instance Figs. 6 and 7 in
Ref. �2��. This variety in the geometry is reflected in the
values of the radius of gyration Rg, as defined by Eq. �3�. The
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value of Rg is indeed proportional to the maximal extension
of the avalanche, but the prefactor depends on its shape.
Figures 6 and 7 show how Rg varies with s in the 87% and
95% aerogels. One can see that avalanches with a similar
size may have quite different radii of gyration. For instance,
in the 87% aerogel at T*=0.5, avalanches of size s
103

have a radius that varies between 4 and 10 �note that for a
compact object, a factor of 2 in Rg would correspond to a
factor 8 in s�. Similarly, in the 95% aerogel at the same
temperature, Rg varies from 10 to 15 for avalanches of size
s
104. It is therefore impossible to associate a unique char-
acteristic length to an avalanche of a given size. Moreover,
by examining the avalanches that occur in a small interval of
�, we find that they also have very different radii of gyration.

As the temperature increases, the values of Rg for a given
size s are less scattered. Indeed, avalanches become more
compact as they correspond to condensation events that oc-
cur in a single cavity of the aerogel. This evolution is very
clear in the 87% aerogel: at T*=0.8, the radius of gyration of
most avalanches is between 2 and 4 and there are almost no
avalanches with Rg larger than 6. On the other hand, there is
still a large domain of variation of Rg in the 95% aerogel at
T*=0.9, and one should go to even higher temperatures to

observe a significant reduction. There is in fact a remarkable
resemblance between Figs. 6�a� and 7�b� which suggests that
the avalanche properties are similar apart from a scale factor
of about 2. The adsorption isotherms have also similar
shapes, as can be seen in Figs. 2�a� and 3�a�. This confirms
the observation made in Ref. �2� that the adsorption pro-
cesses in a low porosity gel at low temperature and in high
porosity gel at a higher temperature have similar properties.

C. Spherical avalanches

In both Fig. 6�a� and Fig. 7�b�, one may notice that a
small set of avalanches stands out. In the 87% gel at T*

=0.5, these avalanches have a size s in the range 100–500
and a smaller radius of gyration than the other ones. They are
therefore more compact, and a direct observation of some of
them shows that their shape is almost perfectly spherical.
This is confirmed by a systematic study of the asphericity
parameter which is always smaller than 10−2 �27�. As shown
in the inset of Fig. 6�a� on a log-log scale, the radius of
gyration of these avalanches varies approximately like Rg

FIG. 4. Point cloud of the avalanche size s recorded in the 87%
porosity samples as a function of chemical potential � at T*=0.5 �a�
and T*=0.8 �b�. FIG. 5. Same as Fig. 4 in the 95% porosity samples at T*=0.5

�a� and T*=0.9 �b�.
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�0.42s0.33 which is indeed close to the expected value for
spherical compact objects �Rg=�3/5R=�3/5�3s / �4���1/3

�0.48s1/3 for a sphere of radius R�. The radius R varies
between 2.5 and 4, this latter value corresponding approxi-
mately to �G which is also more or less the size of the largest
voids in the aerogel �1�. Moreover, as shown in Fig. 8, most
of these avalanches occur at the end of the adsorption pro-
cess; they thus correspond to the condensation of the last gas
bubbles that remain in the large cavities.

A similar behavior is observed in the 95% aerogel at
T*=0.9 �Fig. 7�b��. The avalanches are again approximately

spherical and occur in the last stage of the adsorption pro-
cess. However, since the temperature is higher, the bound-
aries of the gas bubbles are less well defined, and the radius
of gyration of varies approximately like Rg�0.73s0.29. The
largest observed value of R=�5/3Rg is again comparable to
the size of the largest cavities in the aerogel ��G�10�. Al-
though there are also some other remaining bubbles of more
complicated shape �see Figs. 7 and 9 in Ref. �2��, these
spherical avalanches actually represent the only case where
one can relate directly the characteristic size of the conden-
sation events to the structure of the aerogel. We stress again
that, in general, the avalanches have a complicated shape so
that one cannot describe the condensation of the adsorbed
gas in terms of “constant curvature bubbles” �4�.

The fact that spherical avalanches are clearly identified
gives us the opportunity for testing a macroscopic descrip-

FIG. 6. �Color online� Radius of gyration Rg and size s of the
avalanches in the 87% porosity samples at T*=0.5 �a� and T*=0.8
�b�. The inset in �a� is a magnification of the point cloud of the
spherical avalanches �see text� in log-log scale; the solid line rep-
resents the equation Rg=0.42s0.33.

FIG. 7. �Color online� Same as Fig. 6 for the 95% porosity
samples at T*=0.5 and 0.9. In the inset of �b� the solid line repre-
sents the equation Rg=0.73s0.29.
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tion of the gas condensation in terms of a competition be-
tween volume and surface contributions. Such a description
underlies the classical interpretation of capillary condensa-
tion based on the Kelvin equation �26� that is commonly
used to extract from the isotherms information on the char-
acteristic pore size in the solid. We thus write the change in
the grand potential associated to the condensation of a
spherical gas bubble of radius R at the chemical potential �
as �33�

����� = �p��� − pl
+����

4�

3
R3 − �4�R2, �5�

where p��� is the corresponding bulk gas pressure, pl
+��� is

the pressure of the metastable liquid at the same chemical
potential �both pressures are computed from the equation of
state of the bulk lattice gas�, and � is the �planar� liquid-gas
surface tension. All these terms except R are temperature
dependent. Assuming that condensation occurs at equilib-
rium, the Kelvin equation �in its Laplace form� corresponds
to setting ��=0 in the equation. Expanding as usual p and
pl

+ about psat and to first-order in ��=�sat−� �which is valid
for small undersaturations�, this yields ��=3� / ���l−�g�R�,
where �l and �g are the densities of the coexisting liquid and
gas at this temperature. Since the surface tension on a lattice
depends on the orientation of the surface with respect to the
lattice vectors, we estimate � by taking the average of the
three values calculated in the principal lattice planes �100�,
�110�, and �111� �28�. The corresponding “Kelvin plot” is
shown in Fig. 9. We see that the “macroscopic” Kelvin equa-
tion provides the correct trend for the variation of �� as a
function of 1/R, in spite of the fact that actual condensation
does not occur at equilibrium ����0 �29�� and that the
adsorbent potential and the curvature corrections are ne-
glected in Eq. �4� �note that �� is 10 times smaller in the
lighter gel, which is due to the effect of temperature, cor-
rectly described by the term 3� / ��l−�g�, and to the change
in the average radius R by a factor of about 2�. The scatter in

the data, however, shows that the Kelvin equation is only an
approximation.

IV. SCALING OF THE ADSORPTION ISOTHERMS
AND PHASE DIAGRAM

The existence of a critical point in our system, at which an
infinite avalanche occurs for the first time in the thermody-
namic limit and the avalanche size distribution has a power-
law behavior, suggests the possibility of performing also a
scaling collapse of the adsorption isotherms. In the case of
the nonequilibrium RFIM at T=0 where the disorder is con-
trolled by the width � of the distribution of the random
fields, standard renormalization group arguments suggest
that the magnetization curve M�H� for different values of �
may be collapsed using the scaling form �10�

M��,H� − Mc��c,Hc� 
 �r��M±�h/�r���� , �6�

where Mc is the critical magnetization �i.e., the magnetiza-
tion at the critical field Hc for the critical disorder �c�,
r= ��c−�� /�c and h=H−Hc are the reduced disorder and
reduced field, respectively, and M± is a universal scaling
function �� refers to the sign of r�. The estimated values
of the critical exponents in three dimensions are
��0.035±0.028 and ���1.81±0.32 �10�.

The situation in our system is more complicated than in
the RFIM because the Hamiltonian �or, more correctly, the
grand-potential functional �� contains three parameters that
can be tuned independently �the porosity �, the interaction
ratio y, and the chemical potential ��, and, moreover, the
temperature controls the ruggedness of the free-energy land-
scape. Although a rigorous proof is lacking, it seems how-
ever reasonable to assume that the critical behavior is gov-
erned by a unique fixed point, which may or may not be the
same as for the T=0 nonequilibrium RFIM. In other words,
there are only two relevant variables from a renormalization-
group standpoint: the chemical potential �that plays the role

FIG. 8. Probability distribution P��� of spherical avalanches
along the adsorption isotherm in the 87% porosity aerogels at T*

=0.5. The average isotherm is shown as a continuous line.

FIG. 9. �Color online� �a� The undersaturation ��=�sat−� as a
function of the inverse radius of the spherical avalanches in the
87% and 95% aerogels at T*=0.5 and T*=0.9, respectively. �b� is a
magnification of the small point cloud in �a� near the origin corre-
sponding to the avalanches in the 95% aerogel. The solid line with
a slope 1 corresponds to the Kelvin equation �see text�.
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of the magnetic field H in the RFIM� and an effective disor-
der � which is some smooth function of y, �, and T. �In
addition, one could also take into account the microstructure
of the aerogel, on top of the dependence on the porosity: in
particular, one may suspect that the fractal character of very
light aerogels, e.g., ��99%, modifies the values of the criti-
cal exponents or, at least, induces a different scaling behavior
in some intermediate regime; this possibility is not taken into
account in the present study which does not consider aero-
gels of porosity larger then 95%.� For fixed y and T, there is
a critical value �c�y ,T� of the porosity, and a critical value
�c�y ,T� of the chemical potential. Alternatively, for fixed y
and �, there is a temperature Tc�y ,�� and a chemical poten-
tial �c�y ,�� at which the system becomes critical. If this
picture is correct, one expects to observe the same critical
behavior whether the critical line �c�T� �or Tc���� is ap-
proached along a constant-� or a constant-T trajectory in the
temperature-porosity diagram �for simplicity, we forget the
dependence on y which is kept constant and equal to 2 in all
our computations �1,2��.

Consider for instance the collection of isotherms dis-
played in Fig. 10 which covers a significant range of tem-
peratures and porosities. This would correspond to 2.08 K

T
4.16 K for the real 4He-aerogel system, but this must
be considered only as a crude estimation. We indeed recall
that our treatment is not aimed at a quantitative description
of actual systems because of the coarse-grained character of
the model and the use of a �local� mean-field approximation.
Note that the density of the adsorbed fluid is rescaled by its
value at �=�sat so that all the curves go to 1 as �→�sat �one
has � f�� ,�sat����l�T� where �l�T� is the density of the bulk
liquid at coexistence�.

Let us first study the scaling behavior when varying the
porosity at fixed temperature. By analogy with the RFIM,
our basic scaling hypothesis is the existence, in the limit
L→�, of only two scaling variables u�� ,�� and v�� ,�� that
measure the distance to the critical point ��c�T� ,�c�T��. Ac-
cordingly, the adsorption isotherms in the vicinity of the
critical point ��c�T� ,�c�T�� should scale as

� f��,�� − � f��c�T�,�c�T�� 
 � f��,�sat��u/u0��R±� v/v0

�u/u0���� ,

�7�

where R± are the corresponding scaling functions and u0 and
v0 are two nonuniversal scale factors that are temperature
dependent �they actually depend on all the specific features
of the model �30�: y, the lattice structure, the range of inter-
action, etc.�. Note that the scaling variables u and v need not
be exactly �−�c�T� and �−�c�T�, but their dependence on
� and � should be analytic �31�. Unless one uses the proper
variables, the curves do not collapse. In the case of the RFIM
�10�, it was shown that the proper scaling must be done with
replacing h=H−Hc in Eq. �6� by the “rotated” variable
h�=h+br, where b is some nonuniversal constant �on the
other hand, there is no need to rotate r because the corre-
sponding correction is irrelevant when �→�c�. In practice,
the rotation of the x axis can be avoided by simply lining up
the peaks in the derivative of the curves, with no correction
terms, as is often done in analyzing experimental data �by
considering the slope d� f�� ,�� /d� instead of � f�� ,�� we
also get rid of the dependence on � f��c�T� ,�c�T���. What to
do on the y axis is a matter of choice and, for simplicity, we
just take u=�−�c�T�. �Note that in Ref. �10� the curves
dM /dH in the RFIM are plotted using r= ��−�c� /� instead
of the more standard choice r= ��−�c� /�c; alternatively, it
has been proposed to expand r to second order in
��−�c� /�c �19�; these different choices are equivalent as-
ymptotically if no rotation is required, but they may change
significantly the amplitude of the critical regions.� Therefore,
to summarize, we look for a scaling of the form

1

� f��,�sat�
d� f��,��

d�

 a�T��u��−��Ṙ±�b�T�

� − �max

�u��� �
�8�

where u=�−�c�T�, �max�� ,T� is the value of the chemical

potential at the maximum of d� f�� ,�� /d�, Ṙ± is the deriva-
tive of R±, and a�T� and b�T� account for the dependence on
u0 and v0. Since it is important to have smooth isotherms so
that one can take the derivative numerically, the average
must be performed over a significant number of samples: the
curves shown in Fig. 10 result from an average over 500 gel
realizations of size L=100 �however, there are still some
annoying irregularities in the average slopes, especially
around �=�max�.

Calculations are of course done in finite systems so that
one should also take into account finite-size effects �30�.
These are especially important in the low-disorder regime
����c�T�� in which there is a discontinuity in the isotherms
in the thermodynamic limit. This introduces an additional
difficulty in the analysis and it is a very demanding numeri-
cal task to perform a systematic finite-size scaling study of
all the curves �see Ref. �1� for such a study of the T*=0.45
isotherm in the 95% porosity aerogel�. As a consequence, we
shall only consider here the isotherms that are clearly in the
strong disorder regime, which leads to reasonably size-

FIG. 10. �Color online� Average isotherms in aerogels of vary-
ing porosity �the fluid density � f is rescaled by the density at �
=�sat�. From left to right, �=87% ,90% ,92% ,95% at T*

=0.4,0.5,0.6,0.7,0.8. The curves result from an average over 500
samples of size L=100.
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independent results; this eliminates in particular the T*=0.4,
0.5, and 0.6 isotherms in the 95% porosity aerogel.

Figure 11 shows the scaling plot of the slope of the
T*=0.4 isotherms for �=87%, 90%, and 92% obtained with
the choice ��=1.7, �=0.1, and �c�0.4�=0.943 �the scale
factors a�T*=0.4� and b�T*=0.4� are arbitrarily fixed equal
to 1�. It is actually very difficult to adjust independently the
three unknown parameters ��, �, and �c�T�; the values of
the exponents used here are the ones that allow for a collapse
of a whole set of isotherms, as discussed below. It can be
seen that the �=92% and �=90% isotherms collapse onto a
single curve, which is not the case of the �=87% isotherm,
especially on the left-hand side of the peak. This part of the
isotherm is indeed dominated by the presence of a liquid
layer that coats the aerogel strands �1,2�, and in the low-
porosity gels the remaining available void space is too small
for allowing large avalanches to spread out. This contribution
to the adsorption has nothing to do with a critical phenom-
enon and it is reasonable to eliminate from the scaling plot
all the isotherms obtained in the 87% porosity aerogel. More
generally, at each temperature, we choose to discard the iso-
therms that do not belong to the scaling region because the
porosity is obviously too far from �c�T� �i.e., the distance
from the effective critical disorder is too large�. This finally
leads to the global scaling plot shown in Fig. 12, obtained by
adjusting also the nonuniversal scale factors a�T� and b�T�
�which, however, always remain of order 1�.

The overall quality of the collapse is not perfect, but simi-
lar to that found in the RFIM �10� �it is actually better be-
cause we only keep two isotherms at each temperature �32��.
In fact, as discussed in Ref. �10�, the magnetization curves
�or, here, the isotherms� are quantities that do not collapse
well, which makes it difficult to obtain from the scaling plots
a precise determination of the critical exponents or of the
location of the critical point. Although our estimated values

of the exponents �� and � are compatible with those of the
RFIM, the uncertainty is much too large to conclude that our
model belongs to the same universality class. On the other
hand, it is noteworthy that the value 1.7 for the exponent ��
is consistent with the value 1.22 for the finite-size scaling
exponent �=�� /� obtained in Ref. �1�, if one uses for 1 /�
the RFIM value, 0.71±0.09 �10�.

From the values of �c�T� extracted from the scaling plots
at each temperature, we can map out an approximate phase
diagram of the model in the temperature-porosity plane. This
is shown in Fig. 13, where the critical line has been forced to
extrapolate towards the zero-disorder limit �c�Tc�=1. �Let us
recall however that, in a real system, there cannot be a clear-

FIG. 11. �Color online� Scaling plot of the slope of the
T*=0.4 isotherms for �=87%, 90%, and 92% according to Eq. �8�
where x= ��−�max� / ��−�c�T���� and y= ��−�c�T����−�

� f�� ,�sat�−1d� f�� ,�� /d� with �=0.1, ��=1.7, and �c�0.4�
=0.943.

FIG. 12. �Color online� Scaling plot of the slope of the iso-
therms according to Eq. �8� �when varying the gel porosity at dif-
ferent temperatures� or to Eq. �9� �when varying the temperature for
the porosity �=95%�. x and y are the corresponding scaling vari-
ables and scaling functions.

FIG. 13. �Color online� Approximate phase diagram of the
model in the temperature-porosity plane deduced from the scaling
plots. The dashed curve is the critical line Tc��� �or �c�T�� below
which there is a first-order nonequilibrium transition in the adsorp-
tion isotherm. The squares indicate the isotherms that are included
in the scaling plot of Fig. 12.
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cut transition close to Tc because thermal fluctuations be-
come larger and can allow the system to cross the free-
energy barriers on the experimental time scale; moreover, as
noted before, we expect the fractal character of the micro-
structure in very light aerogels to come into play.� The
present calculations indicate that the critical temperature
drops very quickly with the porosity, and the extrapolation to
T=0 predicts that there is no transition at finite temperature
in gels of porosity smaller than �c�T=0��92.5%. This is in
agreement with finite-size scaling calculations performed in
the 87% porosity aerogel that show that the isotherms are
continuous at all temperatures in the thermodynamic limit.
On the other hand, in the 95% porosity aerogel, the study of
Ref. �1� predicts a transition at T*=0.45, which is indeed
below the critical line of Fig. 13. Morever, as shown in the
preceding section, the avalanche size distribution has a
power-law behavior at T*=0.5, which is the critical tempera-
ture extracted from the scaling plot �Tc

*��=95% �
=0.5±0.02�. It turns out that the same critical temperature is
also obtained by studying the scaling behavior when varying
the temperature at fixed porosity. The scaling is now per-
formed according to the expression

1

� f��,�sat�
d� f��,��

d�

 a�����u��−��Ṙ±�b����

� − �max

�u��� � ,

�9�

where u= �T−Tc���� /Tc��� and a���� and b���� are
porosity-dependent scale factors. It is clear from Fig. 13 that
this procedure can only be used with the 95% porosity aero-
gel. The scaling plot of the T*=0.8 and T*=0.7 isotherms is
shown in Fig. 14 �again, the T*=0.6 isotherm is discarded
because of the presence of important finite-size effects�. It
can be seen that a good scaling is obtained with the same

values of the critical exponents as used before. Remarkably,
the resulting scaling function is also the same and it can be
included in Fig. 12 by adjusting the scale factors a���� and
b����. This is a clear indication that the critical behavior of
the system is controlled by the same fixed point for all tem-
peratures and porosities.

We now discuss the comparison of all these results with
experiments.

V. DISCUSSION

In this work and our earlier work �1,2�, we have presented
a detailed numerical study of the adsorption of 4He in silica
aerogel that explains the modification in the shape of the
isotherms as the temperature or the porosity is changed. We
have found that the adsorption occurs via a sequence of irre-
versible condensation events �avalanches� of varying size
and shape. The traditional picture of capillary condensation
in mesoporous solids in which pores of increasing size fill up
successively as the chemical potential or the gas pressure
increases does not hold in aerogel, except, approximately, for
the special category of spherical avalanches that occur at the
end of the adsorption process.

Our calculations predict that there exists a line of critical
points in the temperature-porosity diagram separating two
regimes of continuous and discontinuous adsorption and
characterized by a power-law behavior of the avalanche size
distribution. There is a rather large scaling region where ad-
sorption isotherms at different temperatures and different po-
rosities collapse onto a single universal curve. Although the
system sizes considered in this work are too small to reach a
definite conclusion, the estimated values of the critical expo-
nents seem to be consistent with those of the three-
dimensional field-driven RFIM at T=0 �10,19�.

The qualitative agreement between the simulated and ex-
perimental loops �4–6� is a strong argument in favor of the
validity of the above scenario. However, a complete valida-
tion still awaits the experimental description of the scaling
behavior of the isotherms and the observation of a power-law
behavior in the avalanche size distribution. This latter issue
requires some additional comments. It may be indeed dis-
tressing that avalanches have not been observed so far with
4He in aerogel. In fact, the only exemple of avalanche be-
havior in adsorption/desorption experiments concerns the
draining of superfluid 4He from Nuclepore �34�, a porous
material that contains a random spatial distribution of inter-
connected cylindrical pores. In this case, superfluidity ap-
pears to be a critical factor for the existence and propagation
of avalanches via the presence of a superfluid film on the
Nuclepore substrate that provides a coupling mechanism
even between distant pores. It is likely however that such a
mechanism is not necessary for avalanches to occur in aero-
gels because of very open character of the microstructure.

There are actually several requirements for observing ava-
lanches in sorption experiments, which are all satisfied in the
case of the experiments with Nuclepore �34�, but not in the
case of the existing aerogel studies �3–6�. Let us first recall
that, by definition, avalanches correspond to some collective
reorganization of the system in response to a variation of the

FIG. 14. �Color online� Scaling plot of the slope of the
T*=0.8 and T*=0.7 isotherms in the 95% aerogel according to Eq.
�9� where x= ��−�max� / �T /Tc���−1��� and y= �T /Tc���−1���−�

� f�� ,�sat�−1d� f�� ,�� /d� with �=0.1, ��=1.7, and Tc
*��

=0.95�=0.5.
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external driving force. If one is changing the density rather
than the chemical potential or the pressure �by introducing a
controlled amount of gas into the sample and then measuring
the pressure change�, the system may follow a different path
among the metastable states, and the vertical jumps in the
isotherms that are the signature of the avalanches may not be
observed �35� �this could explain that there are many data
points along the adsorption isotherm at T=2.34 K in 98%
aerogel displayed in Ref. �4��. Second, as already noted, the
observation time must be larger than the time the system
takes to respond to the change in the external control vari-
able. This can be done by continuously changing the chemi-
cal potential at a very slow rate, and measuring the amount
of gas in the solid regularly �every x seconds�. In practice,
this procedure is only possible if the �local� equilibration
time is short �for instance, it is smaller than one second with
superfluid helium in Nuclepore�. Unfortunately, the relax-
ation times in aerogel are much longer �of the order of two
hours with 4He at low temperature in the experiments of Ref.
�5��, and one must change � or P by a finite step and keep it
fixed until a new local equilibrium �i.e., a new metastable
state� is reached. With this procedure, the issue of having a
system with a long equilibration time boils down to stability

of the experimental conditions and of course patience; in
principle, one could then observe avalanches. Yet, if �� or
�P is not small enough, the avalanches may overlap and the
resulting isotherm may appear continuous. This is probably
the situation with the experiments in Ref. �5� where �P / P

10−4 �to be compared with �P / P=�� / �kBT�
10−7 in the
Nuclepore experiments �34��. Finally, a last requirement is
that the sensitivity of the measurements is large enough to
discriminate the jumps in the adsorbed fluid density. This
condition is more easily satisfied when these jumps are large
enough, which implies that one must be close to the critical
line displayed in Fig. 13. Although one must be very cau-
tious in comparing our temperature scale with the true ex-
perimental one, it seems that this last condition is also not
satisfied in the existing experiments.
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